PII: S0040-4039(96)00645-4

Substituent-Control of Stereoselectivity in the Reaction of Allylic Tins. Anti-Selective Lewis Acid-Promoted Reaction toward Aldehydes

Yutaka Nishigaichi,* Noriyuki Ishida, Masahiro Nishida and Akio Takuwa

Department of Chemistry, Faculty of Science, Shimane University, Matsue 690, Japan

Abstract: In the reaction of cis-2-alkenyltins (allylic tins) toward aldehydes, unusual anti-homoallyl alcohols were selectively obtained when the substituent at the 2-position of the alkenyltin reagent was a bulky one such as a tert-butyl or trialkylsilyl group. This reaction is assumed to proceed via the inverse antiperiplanar acyclic transition state. Copyright © 1996 Published by Elsevier Science Ltd

The reactions of allylic tin reagents are now important tools for the stereoselective C–C bond formation in organic synthesis. Among them, the Lewis acid-promoted reaction toward aldehydes is extremely useful as terminally substituted allyltins exhibit *syn*-diastereoselectivity regardless of their geometry, *trans* or *cis*. This selectivity is explained by considering the acyclic transition states (Scheme 1). Initially, Yamamoto proposed the antiperiplanar conformation (\mathbf{A}), and then Keck recently stated the contribution of the *syn*-synclinal one (\mathbf{B}). Keck has also pointed out that this contribution may cause decrease in the *syn*-selectivity of *cis*-allyltins. On the other hand, the *anti*-selective reactions promoted by Lewis acids are slightly known: chelation-controlled reactions between α -alkoxyaldehyde and 2-methylcrotyltin⁴ or optically active allylic tins, and ZnCl₂-promoted reaction of 3-arylallyltins in a donating solvent.

We herein make a preliminary report that *cis*-allylic tin reagents⁷ having the bulky substituents at their 2-position showed unusual *anti*-selectivity in the Lewis acid-promoted reaction toward simple aldehydes. The diastereoselectivity is controlled mainly by the bulkiness of the 2-substituents of allylic tins. From the synthetic viewpoint, the *anti*-selective Lewis acid-promoted reaction is important for the development of diverse C-C bond forming reactions.

Because we can readily obtain substituted 2-pentenyltins, 8 we investigated the reaction of 2-substitutedcis-2-pentenyltins toward benzaldehyde (Table 1).9 As expected from the previously reported reactions of

Table 1. BF3·OEt2-Promoted Reaction of cis-2-Alkenyltins toward Benzaldehyde

PhCHO +
$$X$$

SnBu₃

BF₃·OEt₂

CH₂Cl₂

-78 ~ -20°C, 2h

Syn

anti

Entry	Tin reagent			Product ratio		Yield
	X	Y		syn	anti	- %
1	Et	Н		78	22	59
2	Et	Me		91	9	80
3	Et	ⁱ Pr		84	16	92
4	Et	<i>t</i> Bu	1	13	87	72
5	Et	CH2 ^t Bu		91	9	83
6	Et	SiMe ₃	2	33	67	79
7	Et	SiEt ₃	3	30	70	61
8a	OMe	Н		91	9	86
9	OMe	<i>r</i> Bu	4	5	95	77

^a Data are quoted from ref. 10.

RCHO +
$$\frac{SnBu_3}{CH_2Cl_2}$$
 $\frac{BF_3 \cdot OEt_2}{CH_2Cl_2}$ + $\frac{OH}{R}$ + $\frac{OH}{R}$

Table 2. Reaction of 2-tert-Butyl-cis-2-alkenyltins toward Various Aldehydes

RCHO +
$$X = \frac{SnBu_3}{t_Bu} = \frac{BF_3 \cdot OEt_2}{CH_2Cl_2} = \frac{OH}{t_Bu} + \frac{OH}{X} \cdot \frac{t_Bu}{X}$$

syn anti

Entry	Aldehyde	Tin	Product ratio		Yield
	R	reagent	syn	anti	%
1	n-C ₇ H ₁₅	1	43	57	54
2	c-C ₆ H ₁₁	1	84	16	45
3	n-C ₇ H ₁₅	4	10	90	59
4	c-C ₆ H ₁₁	4	4	96	61
5	PhCH=CH	4	50	50	63

various 2-alkenyltins, 1 unsubstituted cis-2-pentenyltin selectively afforded the corresponding syn-homoallyl alcohol in the BF₃·OEt₂-promoted reaction (entry 1). It was also confirmed that 2-methyl- and 2-isopropyl-cis-2-pentenyltins exhibited syn-selectivity (entries 2 and 3). In sharp contrast, however, when cis-2-pentenyltin had a bulky tert-butyl group at its 2-position (1), it showed high anti-selectivity (entry 4). As far as we know, this is the first example of the anti-selective reaction with a simple aldehyde promoted by BF₃·OEt₂. Similarly, when the substituent (Y) was trimethylsilyl (2) or triethylsilyl (3), the diastereoselectivity remained anti-predominant though at somewhat decreased levels (entries 6 and 7). Furthermore, the anti-selectivity was also good for the reagent (4) with a methoxyl group as the terminal substituent (X); the selectivity increased up to 95 % (entry 9). It was previously reported that when Y was H the selectivity was highly syn-predominant (entry 8).¹⁰ These results would indicate that the anti-selectivity was apparently caused by the bulkiness of the 2-substituent. It is noteworthy that neopentyl group, a considerably bulky substituent, did not exhibit the anti-selectivity but rather high syn-selectivity (entry 5). Tertiary substituents seem to be essential for the anti-selectivity. We also investigated the effect of the double bond geometry and found that the trans-allylic tin reagent formally corresponding to 1 showed syn-selectivity (Scheme 2). Cis-geometry is also essential for the anti-selectivity.

We next investigated the scope and limitation of the present unusually stereocontrolled reaction. The results for the reaction of some other aldehydes with 1 and 4 are collected in Table 2. While the aromatic aldehyde exhibited high *anti*-selectivity, aliphatic aldehydes such as octanal and cyclohexanecarbaldehyde markedly decreased or reversed the selectivity in the reaction with 1 (entries 1 and 2). The reagent 4 showed much wider applicability (entries 3 and 4), but cinnamaldehyde disappointingly gave a 1:1 mixture of the stereoisomers (entry 5). These results imply that the selectivity is controlled not only by the steric factor of the substituent Y but also by the electronic factor.

It is apparent that this unusual stereoselectivity can not be explained by the previously reported transition states.^{2,3} Bearing in mind the effect of tertiary substituents, the present *anti*-selectivity for the major product can most reasonably be accounted for by the inverse antiperiplanar transition state I (Scheme 3); conformation I can most effectively avoid the steric congestion of Y among the *anti*-affording transition states I-III. A similar inverse antiperiplanar transition state that has been proposed by Heathcock in the reaction of silyl enol ethers¹¹ supports our finding. When the substituent Y is relatively small, transition states IV-VI to give *syn*-product are preferred as previously reported.¹²

Knowing such a substituent effect is helpful for designing stereocontrolled reactions. Furthermore, it would be possible to extend this methodology of stereocontrol to other synthetically useful functional groups as the bulky 2-substituent (Y) and the terminal substituent (X). Improvement of the stereoselectivity and further application of the methodology are now under study.

REFERENCES AND NOTES

- For reviews, see; Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworth: London, 1987. Nishigaichi, Y.; Takuwa, A.; Naruta, Y.; Maruyama, K. Tetrahedron, 1993, 49, 7395-7426. Yamamoto, Y.; Shida, N. Advances in Detailed Reaction Mechanisms, Vol. 3; Coxon, J. M. Ed.; JAI Press: London, 1994; p. 1-44. Yamamoto, Y.; Asao, N. Chem. Rev., 1993, 93, 2257-2278.
- Yamamoto, Y.; Yatagai, H.; Naruta, Y.; Maruyama, K. J. Am. Chem. Soc., 1980, 102, 7107-7109.
 Yamamoto, Y.; Yatagai, H.; Ishihara, Y.; Maeda, N.; Maruyama, K. Tetrahedron, 1984, 40, 2239-2246
- 3. Keck, G. E.; Savin, K. A.; Cressman, E. N. K.; Abbott, D. E. J. Org. Chem., 1994, 59, 7889-7896.
- 4. Mikami, K.; Kawamoto, K.; Loh, T.-P.; Nakai, T. J. Chem. Soc., Chem. Commun., 1990, 1161-
- Marshall, J. A.; Jablonowski, J. A.; Luke, G. P. J. Org. Chem., 1994, 59, 7825-7832. Marshall J. A.;
 Wang, X. J. Org. Chem., 1992, 57, 1242-1252. Gung, B. W.; Smith, D. T.; Wolf, M. A.
 Tetrahedron Lett., 1991, 32, 13-16.
- 6. Nishigaichi, Y.; Takuwa, A. Chem. Lett., 1994, 1429-1432.
- 7. In this report, the prefix *cis* refers to the geometry between the stannylmethyl group and the substituent X at the 3-position of allylic tins.
- 8. Nishigaichi, Y.; Ishida, N.; Takuwa, A. Bull. Chem. Soc. Jpn., 1994, 67, 274-276.
- The stereochemistry of the products was determined by the following ways, (a), (b) and (c).
 (a) The ¹³C NMR spectrum of the aldol compound derived as below from the product of entry 4 in Table 1 was compared to that cited in the reference, indicating the *anti*-stereochemistry of the major product. Heathcock, C. H.; Lampe, J. J. Org. Chem., 1983, 48, 4330-4337.

(b) Comparison of the *syn*-isomer of dimethoxyketone prepared from the *trans*-enone (protection, OsO₄ oxidation, methylation and deprotection) and the one derived from the product of entry 9 in Table 1 (methylation and ozonolysis) showed that they had different stereochemistry.

(c) From refs. 9 (a) and (b), the following reaction was confirmed to give the *anti*-isomers, which were spectroscopically compared to the products in Tables 1 and 2 and Scheme 2.

- 10. Koreeda, M.; Tanaka, Y. Tetrahedron Lett., 1987, 28, 143-146.
- 11. Heathcock, C. H.; Hug, K. T.; Flippin, L. A. Tetrahedron Lett., 1984, 25, 5973-5976.
- 12. Of the three conformations IV-VI, we can not tell which one is the most applicable,³ because the preference may be determined by the combination of steric and electronic factors of X, Y and R. Therefore, the reason for the present marked change in the stereoselectivity is not wholly clear yet.

(Received in Japan 5 October 1995; revised 18 March 1996; accepted 3 April 1996)